Comparison of MCNP5 Dose Calculations inside the RANDO Phantom Irradiated with a MLC LinAc Photon Beam against Treatment Planning System PLUNC
نویسندگان
چکیده
MC treatment planning techniques provide a very accurate dose calculation compared to ‘conventional’ deterministic treatment planning systems. In the present work, PLanUNC (PLUNC), a set of software tools for radiotherapy treatment planning (RTP), is compared with MCNP5 (Monte Carlo N-Particle transport code) by calculating dose maps inside the RANDO phantom, utilized as the patient model, irradiated with different field sizes with the MultiLeaf Collimated (MLC) Linear Accelerator (LinAc) Elekta Precise. PLUNC was initially coupled with MCNP5 and so exactly the same patient and plan parameters can be utilized in both dose calculation processes. A MLC Linear Accelerator was commissioned for PLUNC and a MCNP5 model used in the calculations. The coupling of MCNP5 with PLUNC has been achieved via a series of Matlab interfaces, which extract patient and beam information created with PLUNC during the treatment plan and write it in MCNP5 input deck format. A set of Computer Tomography images of the RANDO phantom was obtained and formatted. The CT slices are input in PLUNC, which performs the segmentation by defining anatomical structures. The Matlab algorithm developed by the authors, validated in previous works writes the phantom information in MCNP5 input deck format. Both calculations result in mapping of dose distribution inside the phantom. MCNP5 utilizes the FMESH tool, superimposed mesh tally, which allows registering the results over the problem geometry. Resulting dose maps are compared.
منابع مشابه
Evaluation of Dose Calculation Accuracy of Isogray Treatment Planning System in Craniospinal Radiotherapy
Introduction: Craniospinal radiotherapy is a therapeutic technique for central nervous system (CNS) tumors, which requires meticulous attention to technique and dosimetry.Treatment planning system (TPS) is one of the main equipment in radiotherapy; therefore, the evaluation of its accuracy is essential for dose calculation. The present study evaluates the validity of Isogray TPS in craniospinal...
متن کاملDose calculations accuracy of TiGRT treatment planning system for small IMRT beamlets in heterogeneous lung phantom
Background: Accurate dose calculations in small beamlets and lung material have been a great challenge for most of treatment planning systems (TPS). In the current study, the dose calculation accuracy of TiGRT TPS was evaluated for small beamlets in water and lung phantom by comparison to Monte Carlo (MC) calculations. Materials and Methods: The head of Siemens Oncor-impression linac...
متن کاملDose Calculations for Lung Inhomogeneity in High-Energy Photon Beams and Small Beamlets: A Comparison between XiO and TiGRT Treatment Planning Systems and MCNPX Monte Carlo Code
Introduction Radiotherapy with small fields is used widely in newly developed techniques. Additionally, dose calculation accuracy of treatment planning systems in small fields plays a crucial role in treatment outcome. In the present study, dose calculation accuracy of two commercial treatment planning systems was evaluated against Monte Carlo method. Materials and Methods Siemens Once or linea...
متن کاملEvaluation of Breast Cancer Radiation Therapy Techniques in Outfield Organs of Rando Phantom with Thermoluminescence Dosimeter
Background: Given the importance of scattered and low doses in secondary cancer caused by radiation treatment, the point dose of critical organs, which were not subjected to radiation treatment in breast cancer radiotherapy, was measured.Objective: The purpose of this study is to evaluate the peripheral dose in two techniques of breast cancer radiotherapy with two energies. Methods: Eight diff...
متن کاملCalculations of Linac Photon Dose Distributions in Homogeneous Phantom Using Spline
Introduction Relative dose computation is a necessary step in radiation treatment planning. Therefore, finding an approach that is both fast and accurate seems to be necessary. The purpose of this work was to investigate the feasibility of natural cubic spline to reconstruct dose maps for linear accelerator radiation treatment fields in comparison with those of the simulation. Materials and Met...
متن کامل